

Charles W. Davidson College of Engineering, SJSU

How do I calculate my additional CoE RSCA assigned time, if any?

A. First, collect the necessary input data

- 1- Log on the CoE online database (RTrack) you used to document your grants, journal, and conference publications and calculate CG, CP, CR , NC, and CO below:
 - CG, the cumulative approved grant points.
 - CP; the cumulative approved publication points.
 - CR=CG+CP, your cumulative RSCA earned points
 - NC, the number of cycles since you were admitted in the University
 - CO, your cumulative owed points

B. Calculate the additional CoE assigned time, if any

- 3- Calculate the average earned grant points $AG=CG/NC$, the same for publication, $AP=CP/NC$, and the average earned RSCA points $AR= CR/NC$.
- 4- Calculate your average modified (or net) total earned points $AMR= (CR-CO)/NC$

C. Any faculty with sufficient grant points AG

- 5- if $AMR \geq 4$ & $AG \geq 2$, you qualify for 0.4 additional CoE assigned time,
- 6- elseif $AMR \geq 3$ & $AG \geq 1$, you qualify for 0.2 additional CoE assigned time,
- 7- elseif $AMR < 3$, you do not qualify for additional CoE assigned time based on grants.

Please see also the pseudo code algorithm on the following page. Additional CoE RSCA assigned time is limited to a maximum of 0.4/AY.

Pseudo code of algorithm to compute additional CoE assigned time, if any.

% Input:

CG

% cumulative grant points

CP

% cumulative publications points

CO

% cumulative owed points

NC

% number of cycles to average

% Output:

AAT2

% additional assigned time for sufficient grants

AAT

% additional assigned time to be granted ($\leq 0.4/AY$)

% Calculate AAT1, AAT2, and AAT:

CR=CG+CP

% cumulative RSCA points

AG=CG/NC

% average grant points

AR=CR/NC

% average RSCA points

AMR = (CR-CO)/NC

% average modified RSCA points

% Assistant Professors in their 3rd/4th year (doubling no longer available)

AAT1 = 0

% Faculty with sufficient grant points AG

AAT2 = 0

If (AMR ≥ 4 & AG ≥ 2)

 AAT2 = 0.4

elseif (AMR ≥ 3 & AG ≥ 1)

 AAT2 = 0.2

end

AAT = max (AAT1, AAT2)